

EE552 ELECTRICAL MACHINES III

LECTURE 7

LECTURE NOTES

ELECTRICAL MACHINES III

EE552

SPRING 2018

Dr: MUSTAFA AL-REFAI

LECTURE 7

SYNCHRONOUS GENERATOR

SYNCHRONOUS GENERATOR Speed of rotation of synchronous generator

 synchronous generators are synchronous, during their operation

means: electrical frequency is synchronized with mechanical speed of rotor

 Relation between electrical frequency of stator and mechanical speed of rotor as shown before: fe = nm p / 120

fe: electrical frequency in Hz

nm: speed of rotor in r/min

p: number of poles

SYNCHRONOUS GENERATOR Speed of rotation of synchronous generator

☐ Electric power generated at 50 or 60 Hz, so rotor must turn at fixed speed depending on number of poles on machine

□ To generate 60 Hz in 2 pole machine, rotor must turn at 3600 r/min, and to generate 50 Hz in 4 pole machine, rotor must turn at 1500 r/min

Synchronous Machines - Stator

The stator carries the armature windings which have constant magnitude, constant frequency emf's induced in them

- Stator made from laminated material to limit the eddy current losses. the eddy current losses.
- Fields produced in stator are rotating and time variant
- Stators are cylindrical and house a balanced three phase winding
- Small machines may have a single phase winding.

Armature Windings

- Single layer
- Double later (commonly used)
- Full pitch winding
- Fractional pitch winding (used)
- Concentrated winding
- Distributed winding (used)

AC winding design

The windings used in rotating electrical machines can be classified as

- Concentrated Windings
- All the winding turns are wound together in series to form one multi-turn coil
- All the turns have the same magnetic axis
- Examples of concentrated winding are
- field windings for salient-pole synchronous machines
- D.C. machines
- Primary and secondary windings of a transformer

AC winding design

- Distributed Windings
- All the winding turns are arranged in several full-pitch or fractional-pitch coils
- These coils are then housed in the slots spread around the air-gap periphery to form phase or commutator winding
- Examples of distributed winding are
- Stator and rotor of induction machines
- The armatures of both synchronous and D.C. machines

AC winding design

Armature windings, in general, are classified under two main heads, namely,

- Closed Windings
- There is a closed path in the sense that if one starts from any point on the winding and traverses it, one again reaches the starting point from where one had started
- Used only for D.C. machines and A.C. commutator machines
- Open Windings
- Open windings terminate at suitable number of slip-rings or terminals
- Used only for A.C. machines, like synchronous machines, induction machines, etc

Some Of The Terms Common To Armature Windings Are Described

- 1. Conductor. A length of wire which takes active part in the energy conversion Process is A called A conductor.
- 2. Turn. One turn consists of two conductors.
- 3. Coil. One coil may consist of any number of turns.
- 4. Coil -side. One coil with any number of turns has two coil-sides.

Slots and Coils

Slots and Coils

 N_c turns, $2N_c$ conductors

Slots And Coilson Armature

- ☐ Each slot has 2 positions: top and bottom (double layer winding)
- ☐ Each coil needs to occupy 2 positions: top position of one slot and bottom position of another slot
 - Number of armature coils = Number of armature slots (S)

m phase machine: Number of coils per phase: $S_{ph} = \frac{S}{m}$

Number of turns per phase: $N_{ph} = \frac{S \times N_c}{m}$

Number of conductors per phase: $C_{ph} = \frac{S \times N_c \times 2}{m}$

Note: The above three equations are independent of the number of poles (P). For balanced m-phase design, S_{ph} should be an integer.

Slots and Coils

8 coils, $8N_c$ turns, $16N_c$ conductors per phase

2 pole, Phase A, full-pitch '

4 pole, Phase A, full-pitch

Slot Pitch

Slot pitch in electrical angle is defined by $\gamma = \frac{P}{2} \gamma_m$

where $\gamma_{\rm m}$ is the mechanical angle between two adjacent slots:

$$\gamma_m = \frac{2\pi}{S} \qquad \Rightarrow \gamma = \frac{\pi P}{S}$$
 The slot pitch is also defined as the arc length between two

slots on stator inner circle (with diameter D)

$$\tau_s = \frac{\pi D}{S}$$

3 phase, 24 slots, 2 pole Phase A, full-pitch

Pole Pitch

Pole Pitch: angular distance between two adjacent poles on a machine.

$$\rho_P = \frac{360^\circ}{P} = \frac{2\pi}{P}$$
 (in mechanical degree)

Regardless of the number of poles on the machine, a pole pitch is always $180 \, ^{\circ}$ or π in electrical degrees.

The pole pitch is also defined as the arc length between two adjacent poles on stator inner circle (with diameter D):

$$\tau_P = \frac{\pi D}{P}$$
 (in meter or inch)

Number of Slots per Pole:

$$S_P = \frac{S}{P}$$

Note: S_P may not be an integer.

Coil Pitch

Full-Pitch Coil: If the armature coil stretches across the same angle as the pole pitch, it is called a full-pitch coil. The coil spans across slots, if S_P is an integer.

Fractional-Pitch Coil: If the armature coil stretches across an angle smaller than a pole pitch, it is called a fractional-pitch coil (or short-pitched coil, chorded coil). The coil spans less than S_P slots.

Let S_c be the number of slots that the coil spans.

Let $\rho_{\rm m}$ be the mechanical angle that the coil spans or $\rho_{\rm m} = S_c \gamma_{\rm m}$.

Coil pitch in electrical angle is defined by $\rho = \frac{P}{2}\rho_m$

$$\Rightarrow \frac{\rho}{\pi} = \frac{\rho_m}{\rho_P} = \frac{S_c}{S_P}$$

Presenter Media

